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ABSTRACT 

Using the Method of Gauss, we performed an orbital determination of the near earth asteroid 2002 KL6. Using the 
orbital elements gained from this calculation, we then analyzed the properties and inferred the family of asteroid in 
which 2002 KL6 resides. Using predicted equatorial coordinate data from NASA’s Jet Propulsion Laboratory, we 
used a 0.36 meter, f/11 reflector, C-14 telescope at the Etscorn Observatory (719) to image 2002 KL6 on three 
separate nights. We also credit Annie Chen, Daniel Michael, and Kathryn Chan for providing a fourth set of images 
of 2002 KL6 in order to enhance the accuracy of our data through differential correction. After performing 
astrometric and photometric analyses, we submitted our data to the IAU Minor Planet Center. The astrometric data 
in the form of equatorial coordinates was also used to determine the unit range vectors from Etscorn Observatory to 
2002 KL6 and thus determine the position and velocity vectors of the asteroid at the central observation using the 
Method of Gauss. These two vectors could then be used to determine the orbital elements of the asteroid. Given that 
our data suggested that the orbit of 2002 KL6 was entirely outside the Earth’s, we can determine that this asteroid 
belongs to the Amor group of near earth asteroids. 

1. INTRODUCTION 

Over several weeks, our goal was to image a near-earth asteroid and obtain astrometric and photometric data: that is 
determine the equatorial coordinates of the object and its observable magnitude. Using positional information for the 
asteroid at four distinct observations, we were able to determine its orbit using the method of Gauss. Positional and 
photometric data for 6 data points was also submitted to the IAU Minor Planet Center. Imaging and researching 
near-earth asteroids is relevant today in context of the determination of their orbits. To date, hundreds of asteroids 
have been classified as potentially hazardous. It is therefore important to monitor not only those asteroids but also 
others to detect possible shifts in their orbits that could make them potentially hazardous. The orbital elements 
calculations required an LSPR (Least Squares Plate Reduction) as well as an Orbital Determination code that was all 
written in Python independently by all group members. 

2. MATERIALS AND METHODS: 

1. Data Collection 
We used a 0.36 m telescope, f/11 reflector, C-14 telescope at the Etscorn Observatory (Observer  Location = 719 on 
JPL database).  The images were taken in three different nights in order to be able to find the orbital elements of 
2002 KL6 using the Method of Gauss. Most of the time, we managed to take three or four different sets of visual 
filter images per night. Along with these, we took Bias and Dark frame calibration images (see FIG 3 and 4). 2002 
KL6 was a very bright and fast moving asteroid at the time of our observations, so our exposure time ranged 
between 30-60 seconds (see FIG. 1). At every observation, we focused the camera on a relatively bright star of 
apparent magnitude of 4 to 6. 

 FIG 1. Exposure times on different dates 

Date Exposure Time(seconds)

July 27 2016 60

July 5 2016 45

July 9 2016 45

July 18 2016 30
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!  
FIG 2. Raw Image in Visual on  July 9th 

!              !  
     FIG 3. Dark Image on July 9th                                           FIG 4. Bias Image on July 9th   

  

!             !  
  FIG 5. Reduced Image on July 9th                                    FIG 6.  Aligned image with our asteroid (in the circle) 

2. Data reductions 
We used the CCD Soft software package to reduce and align our images. A blink comparison of our images then 
revealed our asteroid as it moved with respect to the background stars. 
  
3. Programming analysis 
First, all team members wrote centroid programs to help us to find the correct position of a star. A centroid program 
has for input a pixel coordinate for the approximate center of a star in an image and outputs the real x and y pixel 
coordinates of the star’s center (see FIG. 7). Then, we chose twelve bright stars around our asteroid and noted their 
Right Ascension and Declination in a .txt file.  The LSPR code was then written to take all the data from the file and 
by using the Method of the Least Squares give a good approximation for equatorial coordinates for our asteroid. 
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 FIG 7. The first two columns are the x and y coordinates using the Centroid Code to find the center of our asteroid 

4. Method of Gauss 
Once we had the equatorial coordinates we were able to start our Orbit Determination (OD) code to find the 
asteroid’s vector position with respect to the Sun and its velocity. We used the Method of Gauss which requires at 
least three equatorial coordinates for the asteroid, one for each observation. The Method of Gauss returns a final 
positional and velocity vector for the asteroid for the middle or second observation. A single position and velocity 
vector is sufficient to determine the entire orbit of an orbiting body using an ephemeris generator code. The Method 
of Gauss begins with three unit range vectors from the Earth (at Etscorn) to the asteroid (see equation 1). (Note that i 
refers to the number of the observation: 1, 2, or 3). This information in combination with the Earth to Sun vector 
which is widely known and can be accurately obtained from NASA’s JPL database can be used to calculate the 
position vector of the asteroid with respect to the Sun (see FIG. 8) 

FIG 8. The range vector “rho”, Earth to Sun vector “R”, and the position vector “r” 
 

        (1) 

         

        (2) 

Coordinates using the Centroiding

Date of observation(UT time) X(pixels) Y(pixels)

2016-06-28 04:19:47.289 502.166676588 458.786892077

2016-06-28 04:39:54.089 484.070091648 418.854653414

2016-07-05 06:21:54.230 492.002194486 499.007269236

2016-07-05 06:32:42.309 498.006446502 526.999863422

2016-07-09 07:34:43.160 466.636344004 464.557361118

2016-07-09 07:49:56.840 502.213682277 513.694536271

2016-07-18 04:31:34.429 486.005884839 327.005700599

2016-07-18 04:40:16.889 443.757229981 291.968085625
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In order to drastically make the Method of Gauss simpler, specialized Gaussian time units are used instead of 
standard SI units. Gaussian time units are set up in a way to set the gravitational parameter of the solar system equal 
to 1. Below the t values refer to the Julian Day numbers of the first, second, and third observations. 

         
       (3) 

          

        (4) 

The Method of Gauss relies on multiple iterations to become more and more accurate. However to begin the 
iteration process, an initial guess is needed for the magnitude of the position vector at the central observation. Using 
Gaussian time units so that the gravitational parameter is equal to 1, we can use the D equations (equation 2) to 
calculate an approximation of the magnitude of the position vector at the central observation using the scalar 
equation of Lagrange (equation 10).  

          

        (5) 
 

      (6) 

 

        

      (7)  
 

        
        (8) 
 
   

       (9) 
       

       (10) 

After choosing the correct root from the solutions to the Scalar Equation of Lagrange, the resulting magnitude of r 
can be used to make a truncated Taylor Series (equation 12) which allows for the calculation of the magnitude of the 
range vectors (equation 15) and, through vector subtraction, our first guesses for the position and velocity vector 
(equation 16). 
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         (11) 

          
         (12) 
 
          

        
       (13) 
         
 

       (14) 
 

       (15) 

 

       (16) 

Once we have our initial guesses for the position and velocity vector, we can use them to make a less-truncated, 
more accurate Taylor Polynomial for the f and g functions (equation 18). After calculating new Taylor Series 
Polynomials, equations 13, 14, 15, and 16 are used again to calculate new position and velocity functions. Those, in 
turn, are used to calculate new f and g functions. This process is repeated until the position and velocity functions 
reach some tolerance (10 to the power of -12 was used in our case) of precision. To make the Method of Gauss even 
more accurate, light travel time was taken into account during each iteration and was corrected for. 

          

        (17) 
   
 

    (18) 
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5. Calculating Orbital Elements 
The orbital elements of an orbiting body determine the size and orientation of the orbit as well as the body’s position 
on that orbit at a specific moment in time (see FIG. 9). For a Keplerian orbit where the orbit is an ellipse, the semi-
major axis refers to half of the length of the longer axis of the ellipse. The eccentricity is a value between 0 and 1 
and is a measure of how elliptical the orbit is. For example, an eccentricity of 0 is a perfect circle and an eccentricity 
of 1 refers to a parabola. Inclination refers to the angle between the plane of the body’s orbit and the plane of the 
solar system (ecliptic). The longitude of ascending node is the angle between the ascending node and the vernal 
equinox. The ascending node is the point on the orbit where the object rises above the plane of the ecliptic. The 
argument of perihelion is the angle along the orbital plane between the ascending node and the perihelion, the point 
along the orbit where the object approaches closest to the central object, in this case, the Sun. The Mean Anomaly 
depends on time and is the angle between the object’s position along the orbit at a certain time and the perihelion. 

!   
FIG 9. Orbital elements for an orbiting object 

The orbital elements can all be calculated based on the position and velocity vector calculated from the Method of 
Gauss. Note that “a” refers to the semi-major axis, “e” refers to the eccentricity, “i” is the inclination, Capital Omega 
refers to the longitude of ascending node, lowercase omega refers to argument of perihelion, and M refers to Mean 
Anomaly. Note that below, mu, or the Gravitational Parameter is still equal to 1. We will also define the vector “h” 
as the cross product of the position and velocity vectors. 

         

       (19)  

 
       

        (20)  

 

       
   
     (21) 
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      (22) 

 

        (23) 

       (24) 

To improve our determined calculations for the orbital elements, we used a differential correction based on the O-C, 
or observed minus calculated, values for right ascension and declination. In other words, we used the calculated 
orbital elements to calculate the equatorial coordinates that we started this entire process with and used the 
difference between the observed and calculated equatorial coordinates to correct our position and velocity vectors. In 
order to do that we calculated all the numerical partial derivatives for RA and DEC with respect to the x, y, z 
coordinates and the x, y, z  components of the velocity. We summed them up and solved a Jacobian matrix (equation 
25). Differential corrections require four observations total. With final orbital elements after both light travel time 
correction and differential correction, we also included a visual simulation of the asteroid (see FIG. 10). 

    

  (25) 

FIG 10. Visual simulation of the asteroid 2002 KL6 with the Sun and Earth. 
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3. DATA AND ANALYSIS 

FIG 11. A table of all observations and images used to determine the orbit of 2002 KL6. Credits go to Annie Chen, Daniel 
Michael, and Kathryn Chan for providing the images used for the 2016-07-18 data set. 

The raw astrometric data obtained from our images was used to obtain the minimum three unit range vectors from 
the Earth at Etscorn to 2002 KL6. From there, along with known Earth (at Etscorn) to Sun vectors at the times of our 
observations obtained from NASA’s Jet Propulsion Laboratory Horizons Web interface, we were able to use the 
Method of Gauss to obtain the orbital elements of 2002 KL6 (see Materials and Methods). 

Date/Time (UT) of 
Observation

Observing Conditions Astrometric Data Apparent Magnitude 
(V)

Signal to Noise 
Ratio

2016-06-18 04:19:47.289 Completely clear, high 
image quality, asteroid 

observed in raw images. 
Average sky magnitude 

24.7.

RA=17:01:49.02+/-0.36
9 seconds

14.5 66.04699

Dec=+03:51:40.56+/-3.5
30"

2016-06-28 04:39:54.089 RA=17:01:49.02+/-0.36
9 seconds

14.5 75.52374

Dec=+03:51:40.56+/-3.5
30"

2016-07-05 06:21:54.230 Completely clear, high 
image quality, asteroid 

observed in raw images. 
Average sky magnitude 

24.1.

RA=17:24:53.97+/-0.03
5 seconds

13.9 81.41666

Dec=+12:17:14.01+/-0.3
61"

2016-07-05 06:32:42.309 RA=17:24:54.59+/-0.03
5 seconds

13.9 79.36655

Dec=+12:17:49.74+/-0.3
61"

2016-07-09 07:34:43.160 Completely clear, high 
image quality. Asteroid 
observed in raw images. 
Average sky magnitude 

24.3.

RA=17:46:01.32+/-0.20
1 seconds

13.8 96.07016

Dec=+18:34:13.93+/-1.2
66"

2016-07-09 07:49:56.840 RA=17:46:04.68+/-0.20
1 seconds

13.9 84.11759

Dec=+18:35:15.50+/-1.2
66"

2016-07-18 04:31:34.429 Somewhat cloudy. Some 
asteroid images taken. 

Mostly calibration 
images taken.

RA=19:10:23.14+/-0.13
0 seconds

13.2 -

Dec=+35:39:34.17+/-0.2
67"

2016-07-18 04:40:16.889 RA=19:10:27.68+/-0.13
0

13.4 -

Dec=35:40:17.57+/-0.26
7
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FIG 12. All orbital elements independently calculated by all team members. Semi-major axis is in AU, eccentricity is unitless, 
and the rest are in degrees. Note that Mean Anomaly is for July 27 at 9:00:00 UT (JD: 2457596.875) 

The observational data that we obtained was able to converge using the Method of Gauss to yield the orbital 
elements for 2002 KL6 as seen in FIG 12. We also used our calculated orbital elements to cross check accuracy with 
our joint team (Zhengdong Wang, Neha Kumar, Arian Mansur) that collected data on the same asteroid (see FIG. 
13). With our orbital elements we were able to generate the right ascension and declination coordinates at the times 
the other team observed the asteroid. Below, we present the observed minus calculated results, where the observed 
data was from our joint team and the calculated data was from our orbital elements. With these relatively low values, 
we are confident in the accuracy of our orbital elements, especially since they match closely with data acquired from 
an entirely separate group. 

FIG 13. Observed minus Calculated values in degrees for our calculated right ascension and declination coordinates and observed 
coordinates from Wang et al. (2016) 

All values presented here were calculated after a differential correction process. In order to assess the effectiveness 
of this correction, we calculated observed minus calculated values before and after the differential correction. Given 
that the O-C values became lower after differential correction, the differential correction was successful in 
increasing accuracy. 

Semi-Major Axis Eccentricity Inclination Longitude of 
Ascending Node

Argument of 
Perihelion

Mean 
Anomaly

Kim
2.27626064 

+/-0.00607207987
528

0.54233571 
+/-0.0011933

8180902

3.21149667 
+/-0.006543
18274433

213.42193231 
+/-0.0459394049274

97.90400853 
+/-0.05108299

8555

358.736165
35 

+/-0.007517
94816129

Lungu
2.30051161346 

+/-0.01550040083
07

0.547062481
865 

+/-0.0030208
472592

3.23219604
657 

+/-0.015705
8077386

213.501217232 
+/-0.0511635142763

97.822497805 
+/-0.05272580

76492

358.831954
875 

+/-0.005612
748

Khoroshilov

2.2899866278309
986 

+/-0.02855514002
44

0.544969763
15472356 

+/-0.0056957
6754964

3.21476432
51186975 

+/-0.028810
2909174

213.5083722022433 
+/-0.0671482788363

97.703932096
0227 

+/-0.06596360
87679

359.018313
559 

+/-0.024408
81

O-C Right Ascension O-C Declination

2016 06 30 03:54:27 Kim: -0.00533224365012 Kim: -0.00127501211926

Lungu: -0.000396664143466 Lungu: 0.0248870344197

Khoroshilov: 0.0305589762036 Khoroshilov: 0.00761792718488

2016 07 06 05:44:38 Kim: -0.00480505661102 Kim: -0.000673233849533

Lungu: -0.00316794198909 Lungu: 0.0270497116734

Khoroshilov: -0.0213704611405 Khoroshilov: -0.0050990102802

2016 07 18 04:45:36 Kim: -0.116802616982 Kim: -0.0397416373458

Lungu: -0.128665498102 Lungu: -0.0179017115522

Khoroshilov: -0.350298699784 Khoroshilov: -0.0519532932774

2016 07 12 05:34:01 Kim: -0.00355249895699 Kim: -0.000862917233867

Lungu: -0.00720374267524 Lungu: 0.0253920731756

Khoroshilov: -0.106901939059 Khoroshilov: -0.0226075494712
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FIG 14. Observed minus Calculated rms values for right ascension and declination in degrees before and after differential 
correction 

From the orbital elements as well as the simulation shown above, we can determine that our asteroid is within the 
Amors group of near earth asteroids, meaning that its orbit is entirely outside of that of Earth. It must be noted that 
predicted positions of the asteroid suggested that it would be moving rather quickly across the sky during our 
window of observation. This was later confirmed by the fact that our asteroid was very near perihelion at the time of 
observation, thus moving at top speeds according to Kepler’s Second Law. Thus, astrometric data had acceptable but 
non-ideal uncertainties (see FIG. 12). However, we felt relatively confident in the usage of our data given that our 
observed equatorial coordinates matched closely with predicted positions. Since 2002 KL6 was near perihelion, it 
made a relatively close approach to Earth, leading to very low magnitudes (high brightness) compared to many 
Near-Earth Asteroids (see FIG 11). 

4. CONCLUSION 

Given the rather low uncertainty values for our orbital elements, we are certain that our calculations for the orbital 
elements are rather accurate. Our highest uncertainty was for one of our calculations for longitude of ascending node 
which was +/-0.0671482788363 while we were able to achieve down to +/-0.00119338180902 for eccentricity. 
Limited telescope time presented us with some unavoidable challenges including an asteroid that was incredibly fast 
compared to other observed asteroids in the night sky. The fact that 2002 KL6 was very near its perihelion explained 
this abnormality as well as the other interesting, but helpful oddity that the asteroid was very bright with a low 
apparent magnitude. Frequent cloud cover also hampered progress, photometric calculations, and seeing conditions. 
Other error sources could have been the omission of accounting for curvature when determining LSPR, which was a 
linear fit calculation. The choice of reference stars for both astrometry and photometry, as well as differences in 
Python programs between team members which may have led to slightly different rounding errors. For future 
reference and as a suggestion to any subsequent groups observing such a fast and bright asteroid, in determining 
exposure times,  it is useful to calculate ideal exposure times, taking into account seeing conditions, binning, and sky 
motion. 

Though 2002 KL6 did come somewhat close to the Earth this summer, our orbit determination was able to 
determine that as an Amor asteroid, 2002 KL6 poses little threat to Earth. A more detailed long-term simulation, 
which may be described in a later paper, was conducted on the scale of hundreds of thousands of years which 
predicted that 2002 KL6 will mostly likely eventually fall into the Sun, though the possibilities of being shot out of 
the solar system or impacting Venus do exist. In the short term, cases like 2002 KL6 are useful in conducting further 
research on the formation of the solar system and answering questions on how exactly near-Earth asteroids left the 
main belt and why objects with greater mass seem to have developed less-eccentric orbits. 

5. REFERENCES 

1) R. Widenhorn, M. Blouke, A. Weber, E. Bodegom, Temperature Dependence of Dark Current in a CCD, 2002 
2) Z. Wang, A. Mansur, and N. Kumar, Determination 2002 KL6, 9, 2016 

Before After

Kim 0.006398954 0.001848

Lungu 0.018665663 0.001427

Khoroshilov 1.103597538 0.775469
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6. APPENDICES 

COD 719 
CON A. W. Rengstorf 
CON [adamwr@pnw.edu] 
OBS V. Lungu, A. Khoroshilov, J. Kim 
MEA V. Lungu, A. Khoroshilov, J. Kim 
TEL 0.36-m f/11 reflector + CCD 
NET NOMAD 
BND V 
NUM 6 
ACK Team 4 - 2002 KL6 

F4244         C2016 06 28.18040 17 01 49.02 +03 51 40.5          14.5 V      719 
F4244         C2016 06 28.19437 17 01 50.73 +03 52 31.2          14.5 V      719 
F4244         C2016 07 05.26521 17 24 53.97 +12 17 14.0          13.9 V      719 
F4244         C2016 07 05.27271 17 24 54.59 +12 17 49.7          13.9 V      719 
F4244         C2016 07 09.31527 17 46 01.32 +18 34 13.9          13.8 V      719 
F4244         C2016 07 09.32635 17 46 04.68 +18 35 15.5          13.9 V      719 

FIG 11. The data submitted to the IAU Minor Planet Center 
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Temperature and Time Dependencies of Darks and Biases 

1.  DATA COLLECTION STRATEGY AND METHODOLOGY 

Data was collected over the course of three observations with all of the time-dependent darks collected 
simultaneously on July 9th and the biases collected on the 14th and 18th together with the temperature-dependent 
darks. Data collection was structured as to minimize the amount of necessary shifts in temperature. Temperatures 
were decreased from either or 20 or 17 °C by 3° each time, while dark times started at 5s and were doubled until 
160s. Five images per setting were taken and averaged before computing results. In addition, CCD Soft was used to 
reduce the darks before computations (biases of same temperature were used). Regression analysis and error 
computation were performed in Python.  

2.  EXPECTED RESULTS 

a. Temperature Dependent Biases 
The biases account for the difference in excitations between pixels. These differences are not expected to change 
with temperature so the line of best fit is expected to have a slope close to 0: in other words, its uncertainty range 
should enclose the 0 value.  

b. Time Dependent Darks 
With time, it is expected that more thermal electrons be promoted so the total pixel count will increase. The rate of 
electron promotion is expected to be constant (time does not affect “pixel-conditions” and nothing else changes). 
From this it can be extrapolated that the pixel count will increase linearly with time.  

c. Temperature Dependent Darks 
As temperature increases, the number of thermally promoted electrons per second is expected to increase. It is 
expected that the average pixel count per second will increase exponentially with time and follow the Arrhenius 
equation (Widenhorn et al, 2002). 

3.  MEASURED RESULTS 

1. TEMPERATURE-DEPENDENT BIASES 
First, we took all of the data and applied the Method of Least Squares. The graph obtained is below.  

As it can be seen, we have 5 data points for each temperature. 
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Because we introduce a higher uncertainty, we will average each five data points and then apply the Method of Least 
Squares. This gives the graph below.  

 

!  

b= 7.60107 
a=940.31045 

The uncertainties from the method: 
Sigma(a)= 60.85793 
Sigma(b)= 3.837498 

However, we can find a better fitting function for our points. If we choose a quadratic function the graph would 
change. 

As we can see from the graph and best fit line, since sigma for the b-value uncertainty is less than the b-value and 
thus the slope cannot be 0, we must reject the null hypothesis that biases are independent of time. Although 
theoretically they would be, and we see in the graph that the sloe is very small, because we cannot technically have a 
0s exposure time, a bit of dark current will be incorporated in the biases. 

!  
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2. TIME-DEPENDENT DARKS 

We do the same thing as we did before with the bias pictures. We consider the regression line: 

!  

b = 4.39582 
a = 1058.60150 

The uncertainties from the method: 
Sigma(a) = 135.90679 
Sigma(b) =  1.80210 

As it can be seen, the linear regression line approximates our data pretty well.  

3. TEMPERATURE-DEPENDENT DARKS 

A first graph of the average-pixel-count-per-second showed the data to take on an exponential form with few 
outliers, suggesting that it may follow the Arrhenius Principle. To test this, a linear regression was fitted to a 
modified version of the data - taking a natural logarithm of the average pixel count and the inverse of the 
temperature. 

!  
FIG 1. Initial Data Graph 
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!  
FIG 2. Final Data Graph 

b= -10409.4150597  
a=37.32397414 

The uncertainties from the method: 
sigma(a) =  3.7956 

sigma(b) =1073.4651 
  
From the linear fit equation b= -10409.4150597; a=37.32397414 
In order to find the activation energy, the found a and b will help us. 
Doing the calculation for K =1.38064 × 10-23 m2 kg s-2 K-1: and A = 1.44588  average pixel count/s. 

4. UNCERTAINTY IN THE SIGNAL 

i. Temperature Dependent Biases 

ii. Time Dependent Darks 

iii. Temperature Dependent Darks 

Temperature [°C] 2 5 8 11 15 17 20

Uncertainty 6.89034 7.27570 7.03217 7.05606 7.65657 8.31522 9.12840

Temperature [°C] 5 10 20 40 80 160

Uncertainty 10.71800 17.05573 14.21642 12.17817 15.32264 19.56825

Temperature [°C] 5 8 11 17 20

Uncertainty 9.97484 11.47484 13.26983 16.42022 23.29525
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4. CONCLUSION 

Excluding biases, our data supports our initial assumptions with few outliers and the null hypotheses are not 
rejected. Darks seem to be growing exponentially with temperature as predicted by the Arrhenius equation and the 
linear fit of the time inverse and logarithm is satisfactory.  Darks also increase with time and a linear fit seems to be 
both reasonable and sufficient. On the other hand, biases are showing some direct proportionality to temperature 
which can be explained because of the nonzero exposure time in practice. Nonetheless, the slope is still quite 
shallow.
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